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GENERAL INTRODUCTION 

The early transition metal compounds crystallizing in the NaCl-type 

structure have high melting points, low vaporization rates at elevated 

temperatures and exhibit nonstoichiometry over a wide compositional 

range. The electrical transport properties range from semiconductors to 

metallic conductors and even to low temperature superconductors. In 

terms of technological applications, these compounds could be suitable 

high temperature coatings, conductors or heterogeneous catalysts. 

The occurrence of nonstoichiometry, i.e., the formation and sta­

bility of vacancies in one or both sublattices, and long-range vacancy 

ordering at lower temperatures have been of research interest to experi­

mental ists and theorists. A small amount of vacancies (a fraction of a 

percent at room temperature) is usually stabilized by entropie effects.^ 

However, there are many compounds that cannot be categorized as such and 

vacancy stabilization could operate through a different mechanism. 

Examples of highly defective compounds are TiO (15% of the metal and 

nonmetal sites are unoccupied), NbO {25% of the metal and nonmetal sites 

are unoccupied), TiN^_jç (up to 40% of the nonmetal sites are unoccu­

pied), (up to 23% of the metal sites are unoccupied) and Sc^.^S 

(up to 20% of the metal sites are unoccupied).^ 

Many of these compounds have been investigated from the perspectives 

of defect structure, by the usual diffraction techniques^-^, and thermo­

dynamic stability by high temperature vaporization experiments.^® The 

mechanism for vacancy stabilization and ordering in highly defective 

compounds has been examined theoretically in terms of Madelunq energies 
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for and band structurecalculations. Merrickconcluded 

that vacancy ordering in Sc^.^S was not associated with Madelung ener­

gies (i.e., electrostatic interactions) since several alternate orderinqs 

would have lower Madelunq energies and lower free energies. Huisman and 

coworkers,reported that vacancy stabilization in TiO could be ener­

getically driven since creation of new defect states lowered the Fermi 

level. Denker^^ proposed that the vacancies on both subiattices of TiO 

are stabilized because the creation of vacancies reduces the number of 

valence electrons, lowering the Fermi level and depopulating the anti-

bonding levels. This explanation is not convincing because it assumes 

that the density of states is not affected by the presence of vacancies 

and, furthermore, suggests that vacancies should stabilize all compounds. 

Goodenough,^'* on the other hand, proposed that the creation of vacancies 

causes the cubic lattice constant to decrease, broadening the d-band due 

to an increase in the overlap of metal d-type wavefunctions and lowering 

the Fermi level. Despite these proposals for vacancy stabilization, all 

of which lower the Fermi level, no satisfactory theory for vacancy for­

mation and ordering has been proposed for the nonstoichiometric early 

transition metal sulfides. 

The scandium-sulfur system is illustrative of the early transition 

metal sulfides. An early study of the phases and structures of the 

scandium-sulfur system by Dismukes and White® indicated a line compound 

(a compound with no or very small homogeneity range), orthorhombic Sc^Sg, 

and a wide rhombohedral-cubic homogeneity range between Sco.ees^ and 

ScS. The powder pattern of Sco.ees^ was indexed on the basis of a 
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rhombohedral unit cell with a^ = 6.33 A and a = 33°34'. In 1A74, 

Brozek and coworkers,reported the same lattice parameters for a com­

pound richer in scandium, Scq.vsS. Recently, Takeshita et al.,^^ 

reinvestigated the composition range from ScS to ScgSg with respect to 

phases, electrical resistivity and thermoelectric power. X-ray powder 

diffraction studies and metallographic analyses provided evidence that 

the compounds form over two homogeneity ranges. In the first, the crys­

tal structure varies from cubic to rhombohedral depending on temperature, 

in the composition range between Sci.qqS and SC0.75S. For any com­

pound in this homogeneity range, the metal atom vacancies are ordered at 

low temperature corresponding to the rhombohedral structure and are dis­

ordered at high temperature corresponding to the cubic structure. The 

second homogeneity range is narrow in comparison to the first and is 

bounded between Sco.655^ and Sc^Sg. An orthorhombic structure is 

observed in which the metal atom vacancies are partially or completely 

ordered. 

The one-to-one monosulfide vaporizes incongruently when annealed in 

vacuum above ISOO'C, preferentially losing the metal component to form a 

nonstoichiometric compound until about 20% of the metal atom sites are 

vacant.^ The resulting composition is Sco.soes^ and vaporizes con-

gruently, i.e., the composition of the condensed and gaseous phases are 

the same. At this composition, the scandium vacancies are randomly dis­

tributed in the metal subiattice at temperatures above 700°C. At ZnCC 

the onset of a second-order phase transition, satisfying the Landau 

conditions, occurs in which the vacancies are confined to alternate metal 
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atom planes along the cubic 1.111 j direction but randomly distributed 

within the plane, forming a new rhombohedral structure whose corre­

sponding space group is a subgroup of the high temperature phase. 

Franzen and coworkers,^' observed by electron diffraction that further 

ordering within the partially occupied metal atom planes occurs at about 

SOO'C. This ordering, in which the vacancies are located in almost every 

third rhombohedral (1Ï0) plane was found to be incommensurate with 

the metal sublattice and could be explained in terms of a population or 

mass density wave. 

The electrical transport properties vary as a function of metal 

content, ranging from a semiconductor at the sulfur-rich end to a metal­

lic conductor at the metal-rich end.®»^^ One-to-one scandium sulfide 

also exhibits superconductivity with a critical temperature of ~4.3 

and it was observed by Moodenbaugh that as metal vacancies are intro­

duced, superconductivity is lost. The properties of the scandium-sulfur 

system are summarized in Table 1. 

As suggested earlier no satisfactory explanation for the defect 

stabilization in Scq.8065'^(s) has been obtained. Therefore, it is the 

intent of this study to determine the electronic structure of defect ScS 

to test the proposed energetic stabilization mechanisms of Huisman and 

coworkers, Denker and Goodenough, By performing the electronic structure 

calculations on one-to-one and an ordered defect ScS, the effects of 

metal atom vacancies on the electronic structure and the changes in 

chemical bonding induced by the vacancies can be determined. The 
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Table 1. Structures and properties of the scandium-sulfur system 

Composition Color Structure Properties References 

SCgSg yellow orthorhombic 

metal vacancies ordered 

n-type semiconductor 

~2 eV bandqap 

^*^0.685^ orthorhombic 
metal vacancies partially 
ordered 

"300 K : 16 

SCq ygS blue low T rhombohedral 

high T cubic 

P300 - 5.5x10"'* Tt-cm 15,16 

<700''C rhombohedral 

>700°C cubic 

~300'C incommensurate 
monoclinic 

vaporizes congruent!y 

second-order order-

disorder transition 

9,11,17 

cubic "300 K = 
Tj Î 4.3 K 

8,16,18 



www.manaraa.com

6 

thermodynamic stability of Sco.boes^Cs) will also be examined by high 

temperature mass loss Knudsen effusion vaporization experiments. 

Explanation of Dissertation Format 

The first section of the dissertation describes the electronic band 

structure calculations of stoichiometric ScS and a model ordered defect 

scandium monosulfide. The effects of metal atom vacancies on the elec­

tronic structure of ScS will be discussed. The second section describes 

the high temperature thermodynamics of vacancy formation in ScS. 

Finally, the theoretical and experimental results are summarized in an 

attempt to explain the defect stabilization in ScQ.goes^^s). 
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SECTION I. ELECTRONIC STRUCTURES OF STOICHIOMETRIC 

Se S AND ORDERED DEFECT ScgSt* 
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INTRODUCTION 

There has been extensive interest in the electronic structures of 

the refractory transition metal compounds because of the unusual combina­

tion of properties like high melting temperature, low volatility and 

nonstoichiometry over a wide composition range. In the past few decades, 

numerous electronic structure calculations on the stoichiometric transi­

tion metal sulfides,^"'* carbides,nitrides^»®»® and oxides^»^»^ 

were performed employing various theoretical techniques (e.g., APW, KKR 

and semiempirical LCAO-MO clusters). The common features are low lyina 

states of nonmetal p character (p-band or valence band) with an admixture 

of metal d character and a complex manifold of states with metal d char­

acter (d-band or conduction band), which are separated by an energy gap 

in the oxides or a small amount of overlap in the remaining compounds. 

The strong hybridization of nonmetal p and metal d states in the valence 

band region is considered to be responsible for the high melting tempera­

ture and low volatility of these materials. In addition, the partial 

occupancy of the metal d-band is responsible for the metallic nature, 

hence the name conduction band. 

The tendency for these compounds to form nonstoichiometrically over 

an extended composition range is a remarkable property. The introduction 

of vacancies alters the physical properties of the compound and a deeper 

understanding of the electronic structure of the nonstoichiometric com­

pound is essential. Over the past five years, experimental and theoreti­

cal studies on the nonstoichiometric carbides,^»nitrides^'^»^'^"^'' 

and oxides^-^^ with vacancies on the nonmetal subiattice or both 
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sublattices have been reported. In general, the results presented for 

the same class of compounds (e.g., TiC^.x, TiNi_x) are contradictory. 

Different theoretical model calculations (e.g., CPA, MS-Xa cluster calcu­

lations, APW) and different sample preparation and cleaning techniques 

(e.g., CVD, hot pressing) give rise to either of two results. These are: 

(a) the formation of new localized "defect states" between the nonmetal 

p-band and the Fermi level, lowering the Fermi energy and stabilizing the 

defect compound^»or (b) an increase in the density of states 

near the Fermi level together with an upward shift in Ef, since the 

removal of nonmetal atoms reduces the number of p states available in the 

valence band region and forces the metal d electrons to occupy empty d 

s t a t e s  a b o v e  t h e  o r i g i n a l  F e r m i  l e v e l 1 3 , i s  

Despite numerous investigations on nonstoichiometric compounds, 

rigorous calculations for metal-deficient transition metal sulfides have 

not been performed. Scandium sulfides with the compositions of Sci.oyS 

and ScySi^ are prime candidates, since by performing rigorous quantum 

mechanical calculations, the effects of metal atom vacancies on the elec­

tronic structure and the nature of chemical bonding interactions can be 

elucidated. 

One-to-one ScS crystallizes in the rock-salt structure with both 

scandium and sulfur atoms possessing nearest neighbor octahedral 

coordination. The composition of the model ordered defect ScS is ScgSi^ 

with 25% of the metal atom sites vacant. The unit cell which is derived 

from the nonprimitive rock-salt cell with the body center scandium atom 

removed is simple cubic as shown in Figure 1.1. The unit cell contains 3 
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Figure 1.1. ScgS^^ unit cell. Black circles denote the positions of 
sulfur atoms; white circles denote the positions of scandium 
atoms; and dashed circle denotes the position of a defect 
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scandium atoms at (a/2,0,0), (0,a/2,0), (0,0,a/2), 4 sulfur atoms at 

(a/2,a/2,0), (0,a/2,a/2), (a/2,0,a/2), (0,0,0) and a scandium vacancy at 

(a/2,a/2,a/2). This model defect structure differs from the experimental 

defect compound Sco.Qoes^ with respect to composition and vacancy 

ordering (the (111) metal atom planes are now all partially occupied). 

The electronic structure of the hiqh temperature phase of Sg.soes^ 

cannot be determined because the metal vacancies are randomly dis­

tributed. The unit cell of the low temperature rhombohedral form of 

SC0.8O65S would contain too many atoms, requiring an enormous amount 

of computer time. Despite the composition and ordering discrepancies, 

the results of the calculations are satisfactory, since short-ranqe clus­

tering of vacancies would cause only small perturbations. There are two 

different sulfur sites (Figure 1.1): (a) the sulfur atoms on the cube 

faces are surrounded by 4 scandium atoms in the plane and 2 vacant scan­

dium sites above and below the plane, forming a square planar coordina­

tion geometry, and (b) the sulfur atoms on the cube corners remain in 

octahedral coordination geometry. 

The effects of vacancies on the electronic structure of scandium 

monosulfide will be determined by comparing: 

a) the energy bands (a plot of momentum vector 1< vs eigen­

values), 

b) the total density of states (the number of electron states in the 

energy range E to E + dE), 

c) the orbital or angular momentum decomposed densities of states to 

determine the origin of the peaks in the total density of states. 
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d) charge transfer to determine the extent of ionic character in 

these compounds, and 

e) the charge density distributions to determine the nature of the 

bonding interactions. 

The results of the calculations can then be compared to existing experi­

mental results, XPS core level binding energies, specific heat and the 

optical spectrum, in order to verify the integrity of the theoretical 

model calculations. 
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THEORY AND METHOD 

KKR Green's Function Band Structure Calculations 

The electronic structures of one-to-one and ordered defect scandium 

monosulfide were calculated self-consistently using the nonrelativistic 

Korrinqa-Kohn-Rostoker (KKR) Green's function technique.^® In order to 

gain an understanding of the distribution of electron states in solids, 

solutions to the Schrodinqer equation are sought. In atomic units, the 

Schrodinger equation is written as 

(-v2 + v(r) - E) Y (r) = 0, (1.1) 

where V(r) is the crystal potential which has the periodicity of the 

lattice. To simplify the task of solving the fundamental equation, the 

true crystal potential is replaced by a muffin tin potential. In the 

muffin tin potential approximation, a sphere is centered on each atomic 

position in the unit cell such that they do not overlap and inside the 

sphere the potential is spherically averaqed. In the reqion between the 

spheres, the interstitial reqion, a volume averaged potential is 

substituted. 

The muffin tin potential was generated by first calculatinq the 

Hartree-Fock-Slater self-consistent atomic charge densities. Secondly, 

following the procedure described by Mattheiss,^^ the atomic charge den­

sities were superposed to yield the spherically averaged atomic poten­

tials. The atomic and crystal potentials also consisted of an exchange-

correlation component using the Hedin-Lundqvist approximation. 
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Within each muffin tin sphere, the wavefunction is composed of a 

finite sum of spherical harmonics multiplied by the radial function, 

which is dependent only on the azimuthal quantum number due to the 

spherically symmetric nature of the crystal potential. That is, 

^ ( r )  = 1  1  G .  F  f r )  Y  ( P ) ,  ( 1 . 2 )  
&=n m=-& 

where & and m represent the angular momentum component, Cj^ ^(E) is an 

expansion coefficient determined by solving a set of linear equations, 

R n(r)'s are solutions to the radial Schrodinger equation for energy E 
Jtjt 

and ^(r)'s are the spherical harmonics. For both ScS and ScgSi^, the 

expansion included spherical harmonics through i = 2 within the Sc and S 

spheres, but only through & = 1 within the Sc vacancy sphere. 

The Green's function, G(r,r'), is defined by the differential 

equation 

(-V^ -E) G(r,r') = -<5(r-r'). (1.3) 

Now if the Green's function is applied to the Schrodinger equation, 

(-V2 -E) y(r) = -V(r) Y(r), (1.4) 

the resulting electron wavefunction is an integral equation, 

'y(r) = G(r,r') V(r') Y(r') dV'. (1.5) 

volume 

The integral over the cell volume can be replaced by the integral over 

just the muffin tin spheres because of the muffin tin potential approxi­

mation. Furthermore, the volume integral can be rewritten as a surface 
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integral by making use of Schrodinger's equation and the definition of 

Green's function. That is, 

n = Y(r) - tin G(r.r') V(r') Y(r')d3r' {1.6a) 

volume 

= ^(r) - J muffin tin G(r,r') (V'2 + E) nr')d^r' (l.Rb) 

volume 

' Win tin ^G(r.f') - »(?') — Gff,?') Jds'. (1.6c) 

surface ^ 

The final result is that once the wavefunction inside the muffin tin 

spheres and the form of G at the muffin tin boundaries are known, the 

surface integral equation (equation 1.5c) reduces to a set of homogeneous 

linear algebraic equations. The solutions to the set of equations are 

determined by finding the zeros of the secular determinant by allowing 

the energy to vary between a minimum and maximum value at a particular 

wave vector The resulting set of energies and it's produces the 

dispersion relation E = E(i() which is called the energy bandplot. 

The wavefunctions Y(r) are then obtained by substituting E(!t) back 

into the set of linear equations. 

In order to resolve the question of electron distribution and charge 

transfer in solids, an accurate representation of the charge density is 

desired and thus requires the self-consistent process. The valence 

electrons of the atoms comprising the unit cell create an electrostatic 

potential from which a charge density can be generated by solving 

Poisson's equation within the muffin tin spheres. This charge density 
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is then used in Schrodinqer's equation to generate a set of wave-

functions. In turn, these wavefunctions generate a new charge density. 

This process is repeated until the set of wavefunctions from two consecu­

tive iterations do not change. 

The self-consistent procedure is depicted in the flow diagram 

(Figure 1.2). Self-consistency was achieved when the maximum error in 

the total charge density (core + valence) between successive iterations 

was less than 0.003 electrons/(a.u.)^. The wavefunctions and eigenvalues 

were evaluated for 20 points uniformly distributed in ^/i+eth of the first 

Brillouin zone (BZ). The remainder of the first BZ is generated when the 

48 group operations are applied to the 20 points in the irreducible piece 

of the BZ. For one-to-one ScS, the wavefunctions and eigenvalues of 9 

bands were evaluated in the irreducible wedge of the face-centered cubic 

BZ. On the other hand, the wavefunctions and eigenvalues of 30 bands 

were evaluated in the irreducible wedge of the simple cubic BZ. The 

lattice constant was taken to be 5.192 A in both calculations. The 

radius of the Sc muffin tin sphere was 1.397 A and 1.196 A for the S 

muffin tin sphere. The empty site in the ordered defect structure had a 

radius of 1.397 A. In both structures, 53% of the cell volume was occu­

pied by muffin tin spheres. 

In order to obtain the energy dispersion bandplot, additional 1< 

points were needed to sample the irreducible piece of the BZ. Therefore, 

for the final determination of wavefunctions and eigenvalues, 60 k points 

were used. The energy bands were fit to a Fourier series using 40 sym­

metrized plane waves with a maximum root mean square error of 2.75 mRy. 
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NO 

YES 

Calculate starting crystal 
potential and charge density 

Calculate eigenvalues and wave-
functions 

Calculate charge density and 
coulombic potential for each 
isolated atom in unit cell 

Calculate charge densities of the 
occupied band states and occupied 
core states 

Mix "old" charge density with the 
sum of the previous charge densities 
to get "new" total charge density 

Generate energy bandplot, total DOS, 
site and orbital decomposed DOS, and 
charge density distribution 

Test for convergence: Is the maximum 
error in the total charge density 
<0.003 electrons/(a.u.)3? 

Calculate "new" crystal 
potential from "new" total 
charge density by solving 
Poisson's equation within 
the muffin tin spheres 

Figure 1.2. Flow diagram depicting the self-consistent process. Each 
box represents a separate program 
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The densities of states, the number of electron states in the energy 

range E to E + dE, were obtained by the method of Jepsen and Andersen^^ 

by summation over microtetrahedra into which the BZ was divided. The 

densities of states for the one-to-one calculation were evaluated using 

2048 tetrahedra in the irreducible ^/^gth of the BZ and 512 tetrahedra 

for the ordered defect calculation. The factor of 4 difference is due to 

the fact that the fee 8Z is 4 times larger than the simple cubic BZ. 

To investigate the character of bonding interactions, the charge 

densities for each set of bands and within each muffin tin sphere were 

determined by calculating the expansion, 

*,m 

where & and m represent the angular momentum component and P. (r) 

is the charge density contribution from the (&,m) component. It is 

required that for each muffin tin sphere, p(f) must transform as the 

totally symmetric irreducible representation for all operations of the 

point group, % symmetry for the octahedral sites and symmetry 

for the square planar sites. Therefore, for each muffin tin sphere the 

number of (A,m) components will be governed by the site symmetry. The 

only nonvanishing elements of p. (r) for the expansion of the charge 

density through £ = 4 are (&,m) = {(0,0), (4,0), (4,4)} on the octahedral 

Sc and S sites. For the ordered defect monosulfide, the nonvanishing 

elements for an atom at a square planar site are (&,m) = {(0,0), (2,0), 

(4,0), (4,4)1 for the 4-fold rotation axis along the z direction and 
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(k,m) = 1(0,0), (2,0), (2,2), (4,0), (4.2), (4,4)} for the 4-fold rota­

tion axis along the x and y directions. The nonvanishing elements are 

constructed by. 

'Cm. 

where I»''"™ is the Gaunt coefficient given by, 
%i,ni 

(1 .8)  

^2 *^2 

and the minimum and maximum energies are determined from the angular 

momentum decomposed densities of states. 
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RESULTS 

Energy Bandplots 

The eigenvalues E were plotted against the momentum vector t 

along the high symmetry directions of the simple cubic RZ (r + x + M + R 

+ r, X » R) to produce the energy bandplots. The simple cubic BZ is 

shown in Figure 1.3; the tetrahedron bounded by the high symmetry points 

represents an irreducible piece of the BZ. 

Figure 1.4 shows the fee eigenvalues of one-to-one ScS plotted in a 

reduced zone. Since the simple cubic BZ is one-fourth the volume of the 

fee RZ, the bands for one-to-one ScS are back-folded, resulting in a 

larger number of bands. This is equivalent to four ScS formula units per 

simple cubic unit cell or Sc^S^ in short. Figure 1.5 shows the energy 

bands of ordered defect SC3S4. The energies in Sc^S^ have been shifted 

by -0.043 Ry so that the bottoms of the sulfur p-bands coincide, and is 

equal to the difference in the muffin tin zeros of the two crystal 

potentials. 

The common features below the Fermi level at the zone center are the 

four low lying Tis states composed primarily of sulfur Sp-states and a 

state composed of scandium 3d-states which overlaps with the sul­

fur 3p-states, constituting the valence band region. Above the Fermi 

level, a complex band system is observed corresponding to the unoccupied 

Sc 3d states. The Fermi level crosses the Sc 3d bands, hereafter called 

the conduction bands, giving rise to the metallic conductivity of these 

materials. The differences at r are primarily the reduced degeneracies 
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Figure 1.3. The simple cubic Brillouin zone with the high symmetry 
points indicated 
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Figure 1.4. Energy bandplot for NaCl-type ScS drawn in the simple cubic BZ. States are labeled by 
both fee and simple cubic representations 
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and the absence of a and a ri2 state between 0.75 and 0.80 Ry in 

SC3S4. The rgg' and r^2 states are presumably the nonbonding Sc d 

states that are present in Sc^Sl^ but absent in ScgS^. 

The removal of a Sc atom reduces degeneracies and generates band 

splittings. An example of band splitting can be seen between the high 

symmetry points M and R. In Sc^S^, the 4-fold degenerate band from 0.28 

Ry at M to 0.26 Ry at R (R^2', R^s» R25) has been split in Sc^S^ into 

two singly degenerate bands (R^z') and a 2-fold degenerate band (R25) 

which are separated by a maximum of 0.12 Ry at R. A second example of 

band splitting is the 2-fold degenerate X3 states in Sc^S^ at 0.47 Ry. 

These X3 states are degenerate because the bands are plotted in a reduced 

zone. In ScgS^, these two states are split along the Z and S directions, 

raising and lowering states near the Fermi level. 

Throughout the BZ in SC3S4, there are states marked in solid circles 

in a narrow energy range (0.27 - 0.41 Ry) with little dispersion and 

localized, which are absent in the corresponding energy range in Sc^S^. 

These are not new states since there are generally 12 bands below the 

fourth F],^ state in both calculations, but rather these are states redis­

tributed by the introduction of a vacancy. 

Total and Orbital or Angular Momentum Decomposed Densities of States 

The total density of states (DOS) for Sc^S^ and SC3S4 (Figure 1.6) 

were obtained from the eigenvalues using the tetrahedron method of Jepsen 

and Andersen. Generally, flat regions of the energy bandplot give rise 

to maxima in the DOS and rapidly varying bands give rise to smaller DOS. 
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Figure 1.6. Total densities of states for Sc^S^ and Sc^S^ 
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There are several features that are observed in the DOS for Sc^S^: 

a) a lowering of the Fermi level from 0.57 to 0.49 Ry, 

b) a shifting of the d-band maximum to lower energies, 

c) a narrowing of the d-band region, and 

d) a new feature in the DOS at 0.37 Ry which is narrow and 

localized. 

The density of states at the Fermi lev(;l is decreased from 55.2 to 

21.2 states/cell"Ry when vacancies are introduced into the metal sub-

lattice. This observation is opposite to that reported for vacancies in 

the nonmetal sublatt ice.^'^"»1^,13,is T^e apparent decrease in the 

DOS at Ef is due to the reduction in number of So conduction electrons. 

In order to illuminate the character of chemical bonding in terms of 

atomic orbitals, the wavefunctions were projected out onto spherical 

harmonics to produce the orbital or angular momentum decomposed densities 

of states. More importantly, the character of the new peak in the total 

DOS of SC3S4 can be understood. 

In Figures 1.7 and 1.8, the partial DOS inside the Sc muffin tin 

sphere with the p- and d-type wavefunction contributions are depicted. 

For both SC4S4 and ScgS^, the features are similar. At low energies 

between 0.04 and 0.40 Ry, the partial DOS is an admixture of Sc p and d 

states. Between 0.40 and 1.0 Ry the partial DOS is primarily of Sc 3d 

states and the partial occupancy of this band system is responsible for 

the metallic conductivity of these compounds. 

The Sc d-type wavefunctions were further decomposed into e^ 

(d 2> d 2 9) and t„ (d , d , d ) components (Figure 1.9). In both 
2g xy xz yz 
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Figure 1.7. Angular momentum projected DOS for A = 1 on a scandium site 
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Figure 1.8. Angular momentum projected DOS for 2 = 2 on a scandium site 
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Figure 1.9. eg ( — ) and t^g (—) densities of states on a scandium site 
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Sci+Si, and SC3S4, the low lying states are of eg character and the 

states near and above the Fermi level are of t2q character. This 

result is consistent with previous calculations on the rock-salt type 

transition metal sulfides. 

The & = 1 and & = 2 partial DOS inside the sulfur muffin tin spheres 

are shown in Figures 1.10 and 1.11. The DOS inside the nonequivalent 

sulfur sites in ScgS^ are shown separately. For both Sc^S^ and SC3S4, 

the partial DOS between 0.04 and 0.40 Ry is predominantly S 3p-like with 

some Sc e^-like states. This pd hybridization is the covalent metal-

nonmetal bonding interaction. 

A noticeable difference is the new feature at 0.37 Ry in the square 

planar S partial DOS with entirely p-type character. The metal tag 

contribution is absent at this energy as was shown in the Sc eg-t2q 

angular momentum decomposition. 

The position of the new peak on the high energy side of the main 

sulfur peak is not unreasonable. This could be explained in terms of a 

simple molecular orbital model. Consider a sulfur atom surrounded by 6 

Sc atoms in an octahedral arrangement, with p orbitals centered on S and 

d orbitals on Sc. The nonmetal p orbitals will overlap with the metal 

Bq orbitals forming bonding and antibonding combinations, lowering the 

energy of this configuration. Now if 2 Sc atoms are removed from the 

apices of the octahedron, as in SC3S4, the pz orbital on S no longer 

can overlap with the orbital on Sc. The result is that there 

will be some nonbonding p states associated with S at an energy greater 
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Figure 1.10. Angular momentum projected DOS for & = 1 on a sulfur site 
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than the energy of the bonding levels, raising the energy of the square 

planar combination. 

In order to test the result of the molecular orbital model, the 

three nonequivalent p orbitals on the square planar S atoms were decom­

posed into projections which lie in the plane of the Sc atoms and those 

along the vacancy-vacancy axis. The top panel of Figure 1.12 displays 

the partial DOS in the plane of the scandium atoms or the bonding modes. 

The bottom panel shows the partial DOS of the square planar S atoms 

directed along the vacancy-vacancy axis or the nonbonding modes. It is 

clear from this decomposition that the new peak at 0.37 Ry originates 

entirely from the nonbonding states associated with the square planar S 

p orbitals directed along a vacancy-vacancy axis. This result is in 

agreement with that predicted by the molecular orbital model. 

The contribution to the total DOS of ScgS^ from the Sc vacancy was 

determined but the charge contribution was negligible, contrary to 

results obtained from calculations with defects in the nonmetal or non-

metal and metal sublattices.9,iu,i'+ This result suggests that elec­

tron localization at the vacancy sites is not occurring. 

Charge Transfer 

In order to address the question of ionic character and changing 

ionicity with stoichiometry, that is, is scandium in Sc^-xS a mixture 

of Sc2+ and Sc^*, charge transfer has been determined theoretically and 

compared to experimental results. 
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Figure 1.12. Square planar sulfur & = 1 DOS projected in the plane of Sc 
atoms (top) and along the vacancy-vacancy axis (bottom) 
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Charge transfer from metal to nonmetal in stoichiometric and non-

stoichiometric transition metal carbides, nitrides and oxides has been 

known.Charge transfer can be investigated by examining 

the core level binding energies in the compound and comparing them with 

those in the pure material. The core level binding energies are obtained 

from XPS or ESCA measurements. 

Merrick^ has reported the scandium and sulfur 2p core level binding 

energies for the pure elements, two scandium sulfide compounds and two 

ionic alkaline earth sulfides with the NaCl-type structure. The results 

imply a small charge transfer from Sc to S and moreover, within experi­

mental error, there are no changes in the scandium and sulfur binding 

energies with increasing Sc vacancy concentration. The absence of a core 

level shift in Sc is evidence that two oxidation states of Sc do not 

coexist in the nonstoichiometric material. It was also concluded that 

strong covalent interactions prevailed in the scandium sulfide materials 

since only small binding energy shifts were measured for scandium and 

sulfur relative to the pure elements. 

A method of determining charge transfer theoretically is to examine 

the difference between the self-consistent total electronic charge and 

the overlapping atomic charge for each type of atom in the unit cell. 

From Table 1.1, charge transfer from Sc to S is approximately the same in 

ScS and ScgS^, namely a loss of about 0.3 electrons from the Sc muffin 

tin sphere and a gain of about 0.06 electrons in the S muffin tin sphere. 

These theoretical results are in complete agreement with the XPS core 

level binding energies, in that the valency of the scandium atoms does 
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Table 1.1. Theoretical total electronic charge in electrons/(a.u.)^ 

Sc Oct S sq pi S Se vacancy Interstitial 

KKR self-
consistent 

19.5966 14.9760 2.4274 

ScS overlapping 
atomic 

19.8543 14.9196 2.2261 

difference -0.2577 0.0564 0.2013 

KKR self-
consistent 

19.5289 15.0217 14.8158 0.3435 2.1502 

SC3S4 overlapping 
atomic 

19.8127 14.9143 14.7959 0.4819 1.9445 

difference -0.2838 0.1074 0.0199 -0.1384 0.2057 
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not change as a function of stoichiometry. A likely explanation for this 

result is an increased metal d-nonmetal p hybridization in the valence 

band region. (See the section on charge density analysis.) 

These results, however, are not consistent with what would be 

expected from the simple ionic model. If this were the case, then the S 

atoms in SC3S4 would have a -2 charge and the Sc atoms would need to 

yield 2 electrons, with a net charge transfer of 0.67 electrons from Sc 

to S. This proves that a simplistic ionic model does not apply to 

bonding in scandium sulfide. 

Comparison to UPS Spectra 

In addition to measuring the XPS spectrum, the valence-conduction 

band spectrum was obtained. There is a one-to-one correspondence between 

the observed photoelectron peaks and the peaks in the broadened total DOS 

below the Fermi level. The theoretical DOS were broadened with a 1 eV 

half-width Gaussian function to adjust for instrumental resolution. 

The UPS spectra shown in the top panel of Figure 1.13 were obtained 

by passing H^Sfg) over a thin foil of Sc metal at two different tempera­

tures.^^ One explanation for the different spectra is that at high tem­

perature (Figure 1.13a), the Sc and S diffusion rates are sufficiently 

rapid to form a near one-to-one surface stoichiometry. However, at a 

lower temperature (Figure 1.13b), the Sc diffusion rate decreases and the 

resulting surface composition is metal deficient giving rise to the addi­

tional side peak 3 eV below the Fermi level. 
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Figure 1.13. Experimental UPS spectra of scandium sulfide (a,b) and 
theoretical total densities of states for ScgS^ (c) and 
SC4S4 (d) 
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There is good agreement with respect to peak position between the 

high temperature UPS spectrum (Figure 1.13a) and the broadened total DOS 

of Sc^S,; (Figure 1.13d). The peak near the Fermi level originates from 

the occupied Sc 3d states and the peak between 4 and 9 eV originates from 

the S 3p states. 

There is fair agreement between the low temperature UPS spectrum 

(Figure 1.13b) and the broadened total DOS of ScgS^ (Figure 1.13c) with 

respect to the position of the additional peak and the maximum in the S 

3p states in ScgS^. The peak heights and positions in the low tempera­

ture spectrum suggest sampling of a two phase mixture or the occurrence 

of surface segregation, i.e., small islands of Sc^.xS dispersed in a 

stoichiometric ScS matrix. 

The similarity in features between the experimental UPS spectra and 

the broadened theoretical total DOS provides support for the theoretical 

model chosen to represent the electron distribution in bulk solids. 

Charge Density Analysis 

Electron density contours in a plane perpendicular to the [111] 

direction were determined to evaluate the bonding interactions in ScS and 

the changes when metal vacancies are introduced. The electron distribu­

tions were separated into two distinct energy ranges, namely the o-band 

or valence band energy range and the d-band or conduction band energy 

range, as determined from the angular momentum decomposed densities of 

states. 

The NaCl unit cell is shown in Figure 1.14 to facilitate the discus­

sion of the electron distribution. Also shown are the sulfur atoms 
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Figure 1.14. The NaCl unit cell. Large dark solid circles denote the position of the sulfur 
atoms; open solid circles denote the position of the metal atoms. The plot plane is 
perpendicular to the [ill] direction. The points a', b' and c' denote the location 
at which the plot plane intersects the Sc-S bond axes. The point d' denotes the 
location at which the plot plane intersects the Sc-Sc bond axis 
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forming an octahedron around the scandium atom. The plot plane is 

perpendicular to the [111] direction and slices through three nonmetal 

muffin tin spheres along the x,y,z axes and a metal muffin tin sphere. 

The points a', b' and c' denote the location at which the plot plane 

intersects the metal-nonmetal bond axes. The point d' denotes the 

location at which the plot plane intersects the metal-metal bond axis. 

The plot plane also contains two other equivalent points along metal-

metal bond axes which are not shown. 

The charge density distribution for NaCl-type ScS in the valence 

band region (Figure 1.15) principally illustrates the metal e^-nonmetal 

p o-bonding interactions (0.0185 electrons/(a.u.)^). The charge density 

within the sulfur muffin tin sphere is essentially symmetric, indicating 

no directional bonding. 

The charge density distribution for NaCl-type ScS in the conduction 

band region (Figure 1.16) shows 3 bonding features. They are: 

a) The absolute maximum of 0.0147 electrons/(a.u.)^ is located at 

the center of the plot plane which is also at the center of a triangular 

face of the sulfur polyhedron. The lobes of the metal tgq orbitals are 

directed toward the eight octahedral faces to form an indirect metal-

metal bond network which mediates the metallic conductivity. 

b) The charge density contours decrease less rapidly in the direc­

tion towards the nearest neighbor metal atoms out along the edge of the 

octahedron (0.0045 electrons/(a.u.)^). This is the metal-metal t2g o-

bond network. 
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Figure 1,15. Valence band electron density for NaCl-type ScS in a plane perpendicular to the [ill] 
direction. The plot plane slices the Sc muffin tin sphere (large circle in center) 
and three S muffin tin spheres (small circles) 
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Figure 1.16. Conduction band electron density for NaCl-type ScS in a plane perpendicular to the 
LlllJ direction. The plot plane slices the Sc muffin tin sphere (large circle in 
center) and three S muffin tin spheres (small circles) 
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c) The charge density contours decrease more raoidly in the direc­

tion towards neighboring nonmetal atoms that form the octahedral cage 

about the central metal atom (0.0015 electrons/(a.u.)^)• This illus­

trates the minor role of metal t2g-nonmetal p it-bonding in the conduc­

tion band region. 

These three bonding interactions in the conduction band region, 

namely, the indirect metal-metal interaction directed through the octa­

hedral faces, the direct metal-metal interaction directed through the 

octahedral edges and the metal-nonmetal n-bonding, are also present in 

NaCl-tyoe ZrS^ (Figure 1.17). 

For SC3S4, the charge distribution in a plane perpendicular to the 

[111] direction and in the valence band region is quite similar to that 

in ScS, mainly metal eg-nonmetal p o-bonding (Figure 1.18). A notice­

able difference is the decrease in the amount of o-bonding to the octa­

hedral sulfur (0.0138 electrons/(a.u.)and an increased o-bonding 

interaction with the square planar sulfur atoms (0.0234 electrons/ 

(a.u.)3). An average charge density of 0.0202 electrons/(a.u.)^ (vs. 

0.0186 electrons/(a.u.)3 in ScS) directed from the Sc atom toward the 

neighboring S atoms suggests an enhancement in covalency when vacancies 

are introduced into the metal sublattice. This result is consistent with 

the absence of a scandium core level energy shift in the nonstoichio-

metric material. 

The three-fold s.ymmetry of the charge density inside the Sc 

muffin tin sphere is also destroyed in ScgS^ due to nonequivalent sulfur 

atoms comprising an octahedral face. In the conduction hand region 
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Figure 1.17. Conduction band electron density for NaCl-type ZrS in a plane perpendicular to the 
[lllj direction. The points a', b' and c' denote the location at which the plot 
plane intersects the Zr-S bond axes. The points d', e' and f denote the location at 
which the plot plane intersects the Zr-Zr bond axes 
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Figure 1.18, Valence band electron density for ScaS^ in a plane perpendicular to the [Hi] 
direction. The plot plane slices the Sc muffin tin sphere (large circle in center) 
and three S muffin tin spheres 
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(Figure 1.19), the charge density maximum (0.0247 e1ectrons/(a.u.)^) is 

again directed through the octahedral face of the sulfur polyhedron but 

displaced in the direction towards the remaining P. nearest neiqhbor So 

atoms. Despite the presence of metal atom vacancies, metallic conduction 

still mediates through this indirect metal-metal bond network. The 

charge density contours decrease less rapidly in the direction towards 

the remaining 2 nearest neighbor Sc atoms (e.g., 0.0080 electrons/ 

(a.u.)3), to form the usual metal-metal t2g o-hond network. Metal 

t^g-nonmetal p m-bonding continues to exist as a minor component. A 

residual amount of charge (0.0028 electrons/(a.u.)^) is now directed from 

Sc towards the vacancy. 

The charge density contours inside the vacancy muffin tin sphere are 

forced to be spherically symmetric since only the contribution from the 

(0,0) component is taken into account. Evaluation of the charge density 

at the muffin tin boundary gave: 0.0069 electrons/(a.u.)^ for the valence 

band region and 0.0002 electrons/(a.u.)^ for the conduction band region. 

The most prominent changes in the charge density when vacancies are 

introduced in the metal sublattice can be summarized as follows: 

a) The charge density maximum in the conduction band region is 

displaced towards the remaining 2 nearest neiqhbor scandium atoms but 

nevertheless through the triangular faces of the sulfur polyhedron, 

b) the marked decrease in the Sc-octahedral S a-bonding interaction 

in the valence band region, and 

c) the enhancement in the Sc-square planar S o-bonding interaction 

in the valence band region, giving rise to an overall gain in covalency. 
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Figure 1.19. Conduction band electron density for ScgS^ in a plane perpendicular to the [111] 
direction. The plot plane slices the Sc muffin tin sphere (larqe circle in center) 
and three S muffin tin spheres 
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DISCUSSION 

The electronic structures of ScS and ScgS^ were calculated using the 

Green's function KKR method to illuminate the influence of metal atom 

vacancies on the distribution of quantized electron states in the solid 

state and the changes in the character of the chemical bonds. From the 

results of rigorous quantum mechanical calculations, the creation of 

metal atom vacancies leads to: 

a) a redistribution of sulfur wavefunctions near a vacancy site, 

creating nonbonding p-states, and 

b) a decrease in the energy gap between the S 3p - Sc 3d valence 

band and the Sc 3d conduction band, increasing the overlap of S 3p and Sc 

3d states. 

The enhanced hybridization in Sc^S^ is therefore a possible explanation 

for the absence of change in the valency of Sc. From the charge density 

analysis, no new bonds are formed when vacancies are created; accom­

modating slight redistributions in the charge density but preserving the 

metal-nonmetal bonding interaction in the valence band region and the 

metal-metal bonding interaction in the conduction band region. 

The electronic contribution to the specific heat has been measured 

for a near stoichiometric sample, Sco.ggS.^s The value of y was 3.4 

mJ/mol which corresponds to a DOS at the Fermi level of 20.1 states/ 

primitive cell'Ry, compared to 14.0 states/primitive cell'Ry determined 

from the ScS calculation. The difference could be attributed to an 
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electron-phonon coupling and correlates well with the occurrence of 

superconductivity below 4.3 

The theoretically derived energy dispersion curve for stoichiometric 

ScS can be compared with the optical spectrum measured by Zhuze and 

coworkers.25 The peaks in the optical spectrum is due to electron tran­

sitions, direct or indirect (i.e., phonon assisted), from one band at low 

energy to another band at higher energy and the peak position is a mea­

sure of the interband energy difference at a certain wave vector 1^. 

The experimental interband energy difference is then compared to the 

theoretical energy difference at the same wave vector t. The reflec­

tion spectrum for ScS contained 4 peaks which were assigned as follows: 

the two peaks at low energies were due to transitions from the two maxima 

in the valence band region to the conduction band near the Fermi level, 

the third peak was due to the transition from the occupied L2' to the 

empty L3' state and the fourth peak was due to the transition from the 

sulfur 3s state to the conduction band near the Fermi level. Table 1.2 

lists the experimental interband energy and the theoretically derived 

value. The closeness of these energy differences indicates that the 

theoretical model is reliable. 

The mechanism for vacancy stabilization in Sc^-xS is probably 

energetic due to the large vacancy concentration, but the results of the 

electronic structure calculations cannot reveal the details of the mecha­

nism. When vacancies are introduced into the solid, the Fermi level is 

lowered as was the general consensus but there were no localized defect 

states with accumulation of electron charge at the vacancy site as 
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Table 1.2. Comparison of the interband transition energy for 
stoichiometric ScS 

Interband transition Experiment® Theory^ 
(Ry) (Ry) 

higher lying p-band 0.301 0.301 

region to Ef 

deeper lying p-band 0.433 0.480 

region to Ef 

L2' to L3' 0.G54 0.650 

sulfur 3s to Ef 1.015 0.981 

^Reference 25. 

''This work. 

proposed by Huisman et al.,^^ there was a redistribution of electron 

states in the vicinity of a vacancy contrary to the rigid band prediction 

of Denker^G and the d-band was narrower instead of broader as proposed by 

Goodenough.^^ 
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SECTION II. HIGH TEMPERATURE VAPORIZATION OF 

SCANDIUM MONOSULFIDE 
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INTRODUCTION 

The high temperature vaporization study of nonstoichiometric scan­

dium sulfide by computer automated mass loss Knudsen effusion experiments 

was performed to investigate the energetics of vacancy formation. By 

determining the enthalpy changes associated with the vaporization reac­

tions of the congruently subliming and stoichiometric monosulfides, the 

energy required to create approximately 20% scandium vacancies in ScS can 

be reaccessed, as well as the relative thermodynamic stabilities of these 

compounds. 

An earlier study by Tuenge et al.^ on the scandium-sulfur system 

employed both mass spectrometry and target collection Knudsen effusion 

techniques to determine the existence of a congruently subliming phase, 

to identify the vapor phase species and to obtain basic thermodynamic 

quantities for the vaporization reactions. Tuenge found that Sco.sogs*^ 

vaporized congruently over the temperature range 1875-2000 K and the mass 

spectrometric results established the vaporization processes as 

Sco.8065-^(5) = 0.8065 Sc(g) + S(g) (2.1) 

and 

SC(j.8065^(5) = 0.8065 ScS(g) + 0.1935 S(q). (2.2) 

Second-law enthalpies at 298 K from target collection were AH%ga = 

222.0 - 4.0 kcal mol"^ for reaction 2.1 and AH^gg = 130.3 ± 4.0 kcal 

mol-^ for reaction 2.2. Third-law enthalpies at 298 K from mass spec­

trometry were AH%g% = 223.4 ± 4.5 kcal mol~^ for reaction 2.1 and 

AH^gg = 133.8 ± 4.5 kcal mol"^ for reaction 2.2. The third-law 

enthalpy change at absolute zero for the dissociation of ScS(g) was 
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calculated to be 110.0 ± 4.8 kcal mol~^, which is in good agreement with 

those reported by Coppens, Smoes and Drowart^ (Dq" = 113.4 ±2.5 kcal 

mol-I) and by Steiger^ (Dq° = 113.5 ± 3.0 kcal mol'^) from mass spec-

trometric investigations. 

By performing a mass spec run from the stoichiometric monosulfide to 

the congruently vaporizing composition at 2035 K, thermodynamic proper­

ties of stoichiometric SCJ^^^QS were also obtained by Tuenge. These 

were: 
ScS(s) = Sco.bOfesSCs) + 0.1935 Sc(g), (2.3) 

AH298 = 18.3 ± 2 kcal mol'i 

ScS(s) = Sc(g) + S(g), (2.4) 

= 240.3 ± 3 kcal mol"^ 
and 

Sc(s) + S(s) = ScS(s). (2.5) 

AH298 = -82.8 ± 3.5 kcal mol"^. 

Reaction 2.3 describes the integral net process for the incongruent 

vaporization of ScS(s), and AH%gg for this process is a measure of the 

energy required to create vacancies in the stoichiometric monosulfide. 

Reaction 2.4 describes the atomization process which provides a measure 

of the cohesive energy of the stoichiometric solid and reaction 2.5 

describes the standard formation process. 

The primary goal of this vaporization study was to monitor the par­

tial pressures of the effusing vapor species via the total mass loss as a 

function of temperature and composition. In addition to this, the tem­

perature dependence of the activity of ScS across the homogeneity range 

of the monosulfide could be determined, as well as the thermodynamic 

properties of Sci.oqS(s). 
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EXPERIMENTAL 

Sample Preparation and Characterization 

The metal-rich scandium monosulfides were prepared by directly 

combining pieces of scandium foil (Ames Laboratory) and sulfur (Alfa 

Ventron, 99.999% purity) in a typical molar Sc to S ratio of 1.15 to 

1.00. In addition, a small amount of TeCl^ was added as a transport 

agent. The Sc, S and TeCl^ were sealed in an evacuated fused silica 

ampoule and heated for several weeks in a tube furnace, initially at 

450°C and eventually up to SOO'C.. When all the S had reacted, the 

scandium pieces were coated with yellow or green sesquisulfide. The 

samples were homogenized by annealing in an inductively heated W Knudsen 

cell at 1450*C in vacuum. The resulting material had a rich metallic 

gold luster and was easily powdered. 

The composition was determined by combustion analysis: a weighed 

portion of Sci+xS was oxidized in air to SC2O3, at 900°C in a muffle 

furnace. The molar Sc to S ratio was obtained to within ±0.005 using 50-

60 mg portions of sample. The lattice parameter was also obtained by 

taking an X-ray powder diffraction pattern (Guinier-Haqg camera using 

Cu radiation and NBS silicon internal standard). The cubic lattice 

parameter was plotted against the composition to yield the graph in 

Figure 2.1. It is significantly different from that obtained by Tuenge 

et al.i and Moodenbaugh,^ who mainly studied the sulfur-rich monosul­

fides. Metallographic analyses of the Sc-rich monosulfides indicated a 

single phase, rather than a mixture of ScS and Sc metal. 
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The observed contraction of the lattice parameter deviating from the 

one-to-one composition could be explained in terms of vacancies. In the 

one-to-one compound there are no vacancies and the cell volume is maxi­

mized. However, when vacancies are randomly created in either sublattice 

(Sci+xS and Sci_xS) the cell volume contracts giving rise to a smal­

ler lattice constant. The existence of a metal-rich scandium monosulfide 

(i.e., Sci+xS) with sulfur vacancies has not previously been verified. 

By performing the high temperatuare vaporization experiments the question 

of metal solubility in ScS can be addressed. 

Mass Loss Knudsen Effusion Experiments 

Mass loss measurements were accomplished by using an instrument 

developed in the High Temperature Chemistry group by Andereqg, Kematick, 

Schiffman and Franzen. This instrument utilizes a MINC-11 microcomputer 

interfaced to a Cahn-RH microbalance and a Leeds and Northruo Electromax 

temperature controller. In addition, a UTI lOOC 2-400 amu quadrupole 

mass spectrometer was used to monitor the effusate. A schematic diagram 

of the simultaneous mass loss-mass spec apparatus is shown in Figure 2.2. 

The computer software to obtain synchronous mass readings, temperature 

and ion currents from the effusing Knudsen cell was developed by Kematick 

and coworkers.5 

About 55-75 mq of a scandium-rich monosulfide was placed in 3 

semitoroidal tungsten liners and contained in a tungsten Knudsen cell 

with a knife-edqe orifice at the bottom. The cell, suspended from the 

microbalance, was heated by radiation from a Sylvania tungsten mesh 
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resistance furnace. The temperature of the cell was measured by a Ta 

sheathed, BeO insulated, W/5% Re - W/26% Re ARI Industries thermocouple, 

with the junction located within 1/4" from the Knudsen cell. This ther­

mocouple was previously calibrated against another thermocouple suspended 

vertically into a dummy cell in order to correct for any temperature 

gradient that may exist between the cell and the tip of the thermocouple. 

The main assembly, consisting of the Knudsen cell, microbalance, mass 

spec, thermocouple and heater, was contained in a water cooled stainless 

steel chamber and evacuated to lOr? torr by means of a diffusion pump. 

The effusing vapor species were directed towards the mass spectrome­

ter located below the furnace. Ion intensities at 45, 77 and 61 amu 

were measured corresponding to Sc+, ScS+ and ScO+, respectively. The ion 

intensity was the difference between integrated signal averaged peak 

areas with the shutter open and closed. 

Three runs employing the identical Knudsen cell (orifice area = 5.02 

X 10-3 and starting material (Scj^.^S) were performed. Prior to 

data collection, the crucible and sample were annealed for approximately 

24 hours at 1273 K. The temperature was then increased to that of the 

first isotherm (see Table 2.1) for a variable length of time from run to 

run. Time, temperature, balance reading, total mass loss and net ion 

currents of Sc, ScS and ScO were stored on a floppy disk and printed. 

The mass loss was also recorded on a strip-chart. When the rate of mass 

loss and the Sc ion current had decreased dramatically the temperature 

was increased. The congruently vaporizing composition was attained when 
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Table 2.1. Conditions before reaching the congruently vaporizing 

composition 

Run Isotherms 

9 1610 K, 1906 K, 2103 K 

10 1709 K, 19S7 K 

11 1609 K, 1756 K, 2053 K 

the ion currents for Sc were constant with mass loss and the total mass 

loss was in excess of the calculated value. At this point, the tempera­

ture was increased to about 2100 K to vaporize the scandium that had 

condensed on the tantalum heat shields during the incongruent vaporiza­

tion. The temperature was maintained at 2100 K for a few hours until the 

Sc ion current had once again become constant. 

At the congruently vaporizing composition, rates of mass loss as a 

function of temperature were measured. The rate of mass loss was calcu­

lated at each temperature by using the computer generated data of time 

and balance reading. 
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THEORY 

Calculation of the Thermodynamic Quantities of Scu.gobsSfs) 

Congruently subliming Sco.eoes^ in equilibrium with its vapor is a 

chemical system comprised of 2 components and 2 phases, together with a 

composition constraint (i.e., the composition of the solid and vapor are 

the same). Consequently, applying the Gibbs phase rule 

F = C - P + 2 (2.6) 

results in a univariant system. This means that if the temperature is 

specified then the partial pressures of the effusing vapor species are 

fixed, precisely in accordance with the thermodynamic equilibrium con­

stant. In order to obtain vapor pressure measurements over Sco.eoes^» 

rates of mass loss as a function of temperature were measured. 

The mathematical relationship which describes the rate at which gas 

molecules effuse through a small (relative to the mean free path) orifice 

as a function of pressure, temperature and mass is given by the Knudsen 

equation,G 

dm. AP.N 
^ ^ ° (2.7) 

where 

dt (2%M.RT)i/2 

'^"^i _ mass rate at which gas molecules of the ith species 
dt escape in mg min~^ 

A = orifice area in cm^ 

Pi = partial pressure of the ith species in atm 

Nq = Avoqadro's number 
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Mi = molecular weight of the ith species in g mol"^ 

R = gas constant in erg mol"^K"^ 

T = absolute temperature. 

In the mass loss Knudsen effusion method, the vapor pressure of the 

gaseous species in equilibrium with the solid is calculated by measuring 

the total mass loss as a function of temperature, 

. no. species dm. 
^ = Y 1 
At i dt 

. I , (2.8) 
3.76x10-7 yi/z i (M.(q mol'M)^^^ 

where the value of 3.76x10"'' incorporates several constants. Applying 

equation 2.8 to the vaporization of Scq.8065^(s)» yields 

Rate (mg min'M = MçmD [ ^ ^ ]. (2.9) 
3.76x10-7 Tl/2 ^^1/2 

The vapor in equilibrium with the condensed phase is, to a high 

degree of precision, ideal at the high temperatures and low pressures of 

these studies. The resulting thermodynamic equilibrium constant expres­

sion, therefore, involves only the partial pressures and not the fugaci-

ties of the vapor species. Combining the definition of the change in the 

standard Gibbs free energy function at temperature T, 

AGy = AHy - TASy (2.10) 

with the equilibrium expression. 



www.manaraa.com

55 

AG° = -RT In K (2.11) 

yields 

R In K = - —L + AS: 
T ' 

(2 .12)  

Thermodynamic quantities like AH" and AS" referenced to a specific 

temperature can be obtained by either of 2 methods, the second- and 

third-law methods. The second-law enthalpy and entropy changes for a 

reaction have been frequently obtained by assuming that the heat capaci­

ties of the reactants and products are independent of temperature over 

the temperature range of the experiment. A plot of R In K vs T~^ will be 

nearly linear, with the slope equal to the standard enthalpy change at 

the mean temperature, -AHy, and the intercept equal to the standard 

entropy change at the mean temperature, aSJ. The resulting standard 

enthalpy and entropy changes at T are usually referenced to 0 K or 298 K, 

by using the standard enthalpy increments, Hj - Hq or Hj - H^gg, and 

the standard entropy increments, Sj - Sg or Sj - S%gy, for the reactants 

and products. The values of the enthalpy and entropy increments require 

estimates of C' of the reactants and products. An alternative proce­

dure of the second-law method utilizes the change in the free energy 

function (Afef) for the reaction and directly gives AH^gg. The change 

in the free energy function at temperature T is defined by 

Afefj = (-AGj + AH298)/T 

AHZ 9 8  
= R In K + (2.13) 

T 
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or 

AH298 = T{-R In K + Afef^) (2.14) 

A plot of (-R In K + Afefy ) vs T-^ yields a line with the slope equal 

to 

The third-law enthalpy change is the average value of AH298 calcu­

lated from equation 2.14 for each temperature the mass loss was measured. 

The alternative second-law and third-law methods require that the fef of 

all the reactants and products be known as a function of temperature. 

For cases in which the fef has not been measured, it is necessary to 

estimate the fef using estimated heat capacities for the condensed phases 

(e.g., ScS(s) and Sco.bo6sS{s)) and using experimental spectroscopic 

data for the gas phase species (e.g., ScS(g)). 

Thermal functions including the standard enthalpy and entropy incre­

ments and the standard fef's for ScS(s), Scy.eoes^fs) and ScS(g) were 

obtained from Tuenge,^ Sc (g) from Hultqren et al.® and S(q) from the 

JANAF tables.9 
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RESULTS 

Knudsen Effusion Vapor Pressure Measurements of ScQ^go^gSfs) 

The partial pressures of Sc, ScS and S over the congruent!y vapor­

izing compound, corresponding to the 39 total mass loss data points, were 

calculated by solving three equations simultaneously. The first equation 

is the Knudsen effusion relation. 

Am A , -1/^ -1/2 -1/2 , 

° ̂  ° 3.76X10-^ T- ^ "s 
(2.15) 

where Am/At = rate of total mass loss in mq min-^, A = orifice area in 

cm^ , T = absolute temperature, and Mg = molecular weights of 

Sc, ScS and S, respectively, in g mol-i, and P^. = partial pressures in 

atm. The second equation is the material balance - congruence relation, 

P P P P 
— + = 0.8065 L — + -^ ] , (2.16) 

"si': "si': "sZS: 

and the final equation is the thermodynamic equilibrium constant expres­

sion relating the equilibrium partial pressures, 

Pc_ Pc 
K = . (2.17) 

^ScS 

The value of K evaluated at temperature T was calculated from the dis­

sociation energy of ScS(g) at 0 K of 113.4 kcal mol~^, reported by 

Coppens et al.^ and the change in free energy function for the reaction 

ScS(q) = Sc(q) + S(g). (2.18) 

The free energy functions for ScS(g) were taken from Tuenge,^ while those 
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for Sc(g) and S(q) were obtained from Hultqren et al.® and the OANAF 

tables,9 respectively. A linear least squares fit of In K vs T~^ between 

1500 K and 2500 K yielded 

In K = - (57324 ± 212) ^ (13 52 ± o.ll), (2.19) 
T 

where the uncertainties are standard deviations. 

The experimental data and the calculated partial pressures are 

listed in Table 2.2. The calculated results are also presented in Figure 

2.3 as In vs T-^ for the individual partial pressures. Linear least 

squares fits to the data yielded 

In Pgc = - (63260 ± 888) + (15,gg ± n.43), (2.20) 

In Pgcs = - (^9797^- 1868) ^ (is.70 ± 0.90), (2.21) 

In P. = - (63864 ± 980) + (I6.33 ± 0.47), (2.22) 
^ T 

where the uncertainties are standard deviations. 

The resulting partial pressures were then used to calculate second-

law enthalpy and entropy changes at the mean temperature according to 

equation 2.12 for the congruent vaporization reactions: 

Sco . b 0 6 5 S (s) = 0.8065 Sc(q) + S(g) (2.23) 

Sco.BOGsSfs) = 0.8065 ScS(q) + 0.1935 S(g). (2.24) 

The standard enthalpy and entropy changes for vaporization at the mean 

temperature (2100 K) and at 298 K are listed in Table 2.3. The enthalpy 
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Table 2.2. Total mass loss Knudsen effusion results 

Temperature AE x 10"^ Pg^. x 10"^ x lO"? Pg x 10-? 

(K) (mg min"M (atm) (atm) (atm) 

2053 2.45 3.52 2,58 4.08 
2143 7.66 11.3 8.18 13.1 
2197 16.0 23.2 18.2 27.1 
2074 3.06 4.49 3.14 5.19 
2026 1.27 1.96 1.14 2.22 
2169 10.6 15,7 11.4 18.2 
2122 5.70 8.43 5.96 9.74 
2124 6.87 9.70 7.80 11.4 
2126 7.30 10.2 8.44 12.0 
2027 1.60 2.33 1.61 2.69 
2066 2.75 4.02 2.83 4.64 
2006 1.03 1.56 0.949 1.78 
2076 2.75 4.18 2.63 4.79 
2151 9.70 13.7 11.1 16.1 
2078 3.74 5.26 4.14 6.15 
2110 5.66 8.02 6.33 9.37 
2111 4.99 7.36 5.21 8.51 
2054 2.70 3.78 2.97 4.42 
2055 2.17 3.25 2.12 3.73 
2153 9.86 14.0 11.3 16.4 
2030 1.45 2.19 1.36 2.50 
2129 6.39 9.38 6.80 10.9 
2006 1.25 1.78 1.28 2.07 
2073 3.46 4.88 3.80 5.70 
2104 5.05 7.20 5.56 8.40 
2055 2.15 3.22 2.09 3.70 
2153 9.94 14.1 11.4 16.5 
2030 1.43 2.17 1.33 2.48 
2104 5.33 7.48 6.03 8.76 
2055 2.53 3.63 2.67 4.21 
2124 6.87 9.70 7.80 11.4 
2025 1.32 2.01 1.22 2.29 
2074 3.29 4.73 3,50 5.49 
2001 0.892 1.37 0.793 1.55 
2132 7.22 10.4 8.02 12.1 
2045 2,08 3.03 2.12 3.50 
2006 1.05 1.58 0.978 1.80 
2105 5.14 7.35 5.65 8.56 
2143 8.28 11.9 9.20 13.9 
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Table 2.3. Second-law results for Sco.8065^(5) 

AHziOO^ ASlioo^ ASzsa^ 
(kcal mol- i)(cal mol- i  K-^)(kcal mol-^)(cal mol- i  K-i)  

Sco.BOSsSfs) = 0.8065 Sc(g) + S(g) 228.4±3.4 58.0±1.6 235.1±3.8 64.1±2.4 

SCu.soGsSfs) = 0.8065 ScS(g) + 0.1935 S(g) 136.4±3.4 36.3±1.6 144.8±3.8 44.8±2.4 

^Uncertaint ies are standard deviat ions. 

^Uncertaint ies are propagated from standard deviat ions and the uncertaint ies in enthalpy 

(±1 kcal mol- i)  and entropy functions (±1 cal mol- i  K-i) .  
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and entropy increments used to reduce ^H^ioo and AS^ioo to 29A K are 

given in Table 2.4. 

The alternative second-law and third-law methods which ut i l ize the 

experimental ly determined equi l ibr ium constant and the estimated change 

in fef were used to calculate the enthalpy changes for the vaporization 

reactions of Scu.ao65^(s) at 298 K, according to equation 2.14. A plot 

of (-R In K + Afefy) vs T-^ for each of the vaporization processes was 

generated which provided a slope equal to AH^gg. The third-law 

enthalpy change for reactions 2.23 and 2.24 was the average value of the 

term T(-R In K + Afef j) ,  calculated at each experimental data point.  

Table 2.5 l ists the results. 

Knudsen Effusion Vapor Pressure Measurements Between 
Sci.n+S(s) and Sco.goGsSfs) 

The mass vs t ime data for each of the 3 runs prior to reaching the 

congruently vaporizing composit ion are presented in Figures 2.4 -  2.G, at 

two or three dif ferent temperatures for a single run. The data were 

ini t ial ly converted to dm/dt values, by est imating the slope of the mass 

vs t ime curves at 20 or 40 minute t ime intervals. The result ing slopes 

were then integrated using a l inear approximation for the curved segments 

and the integrated mass loss was compared to the raw data. The ini t ial  

guesses of the dm/dt values were improved by satisfying the fol lowing 

cr i ter ia: (a) the result ing integrated mass vs t ime data agreed with the 

raw data to within ±0.05 mg, (b) the dm/dt values decreased with t ime 

during an isothermal vaporization and (c) the dif ference in consecutive 

dm/dt values decreased with t ime during an isothermal vaporization. 
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Table 2.4. Enthalpy and entropy increments 

HJioo -  Hggg (kcal mol 'M 

^2100 "  ^298 

Sggg (cal mol- i  K-i)  

Sc(g)® ScS(g)b S(g)^ SCg gQg5S(s)b ScS(s) '^ 

9.077 16.30 9.335 23.4 25.9 

9.879 17.23 10.30 24.4 27.0 

41.75 56.65 40.09 11.8 12.7 

^Reference 8. 

^Reference 7. 

^Reference 9. 
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Table 2.5. Second- and third-law results for Sc^.^oGgSfs) 

Reaction AH|98 (II) AH^98 (HI) 

SC0.8065S(s) = 0.8065 Sc(g) + S(g) 233.6±3.4 230.7±1.8 

SCo.BObsSfs) = 0.8065 ScS(g) + 0.1935 S(g) 143.3±3.4 138.4±1.8 

^Uncertaint ies are standard deviat ions. 

^Uncertaint ies include standard deviat ions and the uncertaint ies in Afef (±1 cal mol"^ K' l) .  
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Figure 2.5. Mass vs time for run #10 
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The improved set of dm/dt values were then used to determine the 

part ial  pressures of S(q), Sc(q) and ScS(g) by the fol lowing procedure. 

Ini t ial  guesses of were obtained at the temperature of the f inal 

isotherm for each run, each of which terminated with the congruently 

vaporizing compound (assumed to be ScQ,ao6S^^)» f i rst subtract ing 

the value of dm/dt at congruence from the dm/dt value at the start of the 

f inal isotherm. The dif ference was assumed to be solely Sc(q) and the 

corresponding Psc value was added to that for the congruently vapor­

izing composit ion, Psc,conq* ^^se ini t ial  Pgc values, together 

with the values for S(g) and ScS(g) at the congruently vaporizing com­

posit ion (Ps,cong and PscS,cong) were used to calculate the moles of 

Sc(g), S(g) and ScS(g) vaporized and hence the composit ion of Sc^S over 

the duration of the f inal isotherm. These composit ions (mole fract ions, 

Xgc and Xs) and ini t ial  Pgc values were used to obtain an improved 

set of Pg values by employing the integral form of the Gibbs-Duhem 

equation 

The integral was evaluated by using a piecewise l inear approximation. 

The improved set of P$ and the ini t ial  Psc values were combined to 

calculate improved values of PScS according to the thermodynamic 

equi l ibr ium constant expression (equation 2.17). The value of K at the 

temperature of the f inal isotherm was obtained by the l inear least 

squares result  (equation 2.19). The improved values of Pg and Pgcg 

P SjCong 

(f inal state 

cong 
(2.25) 
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in turn provided better est imates for the S(q) and ScS(g) contr ibutions 

to dm/dt. A new set of dm/dt values was generated by subtract ing the 

S(q) and ScS(g) contr ibutions from the start ing dm/dt values, and the 

improved Sc(g) contr ibution to dm/dt was used to obtain a ref ined set of 

PSc values. This procedure was repeated for several i terat ions unti l  

no change in the sets of values of Xg^, P^, and Pg^^ were observed. 

An explanation of the l inear approximation of the integrals is 

perhaps necessary. The pert inent data (dm/dt vs t ime and Xgc/Xg 

vs In Psc) were plotted and the intervals along the abscissa were 

decreased i f  the area between a curve f i t ted to the data (by eye) and a 

straight l ine drawn across the interval could be determined. The 

coincidence of the l inear segment and the curve drawn through the data, 

suggests that the l inear integral approximations introduce negl igible 

error in addit ion to those inherent in the experiment (about ±0.05 mg). 

In order to obtain values for the part ial  pressures for a given 

composit ion but at a dif ferent temperature ( i .e.,  at the t ime the 

temperature was changed from the oriqinal isotherm), i t  was assumed that 

a plot of In Pg^g vs T-^ generated from the three Pg^g values at the 

f inal isotherms could be extrapolated. Extrapolat ion of a curve con­

taining only 3 points might introduce appreciable error in Pg^g, 

however, at the composit ions at which the isotherm changed, ScS(g) gen­

eral ly comprised less than 1% of the vapor, i .e.,  the vapor was 99% 

Sc(g), and thus negl igible error should be introduced in Psc. The 

resultant error in PscS was compensated by f inal ly using the same 
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value of the slope to back calculate the pressure of ScS(q) over the 

stoichiometric sol id, PscS» snd at the temperature of the f inal 

isotherm. 

Back calculat ing the start ing composit ion, assuming that the com­

posit ion at the end of the run was Sco.subsS, resulted in values very 

close to the composit ion determined analyt ical ly by combustion analysis: 

Sci. i^S, Sci. ibS and Sc^.^^S compared to the determined value of Sci.^S. 

The Sc(q) pressures calculated at the start of each run were approxi­

mately equal to the Sc vapor pressures reported in Hultqren et al . ,^ for 

example, 1.55 x 10"^ atm compared with 2.5 x 10"^ atm at 1709 K. The 

rapid decrease in Psc from the start of the run strongly indicates 

that the homogeneity range in the Sc-S system extends very close to 

Sci. i^S, contrary to earl ier f indings by Tuenqe and coworkers.^ 

From the calculat ions just described, a set of approximate values 

of PscS evaluated over Sci.ooS(s) resulted. These results are in 

error because of the uncertainty in the composit ion and temperature 

dependence of and in part icular because an approximate In Pg^g 

vs T-^ slope has been used to determine boundary values of Pg^g for 

the lower temperature isotherms. In order to compensate for this 

approximation, the Pg^g values were corrected to the temperature of the 

f inal isotherm using the same value of the slope (d In PgcS/dT"^ = 

-50 X 10^ K), that was used to calculate the boundary values at the end 

of the isotherms. Table 2.6 l ists the pert inent values. 
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Table 2.6. Vapor pressure of ScS in equi l ibr ium with Sci.oo*5(s) 
evaluated at the temperature of the f inal isotherm J2 

Run T i ( K )  
SCI.OOS 

TztK) 
SC0.8065S 

Pscs(Ti) 
(atm) 

PscsfT,) 
(atm) 

^^cS.conqf^z) 
(atm) 

9  1610 2103 6.89x10-10 1.35x10-6 6.33x10-7 

10 1709 1957 4.32x10-9 1.76x10-7 7.73x10-8 

11 1756 2053 6.81x10-9 4.12x10-7 2.17x10-7 

In order to calculate the enthalpy of formation of the monosulf ide, 

Sci.ooS(s), from that of the conqruently vaporizinq phase, Scq.8065^(s), 

the temperature dependence of the act ivi ty of ScS in Sco.goGsSfs) must be 

known. The act ivi ty of ScS, computed as conq/^ScS* "h^re is the 

vapor pressure of ScS in equi l ibr ium with the stoichiometric Sci.ooS(s) 

and PscS.conq the vapor pressure of ScS in equi l ibr ium with the 

conqruently vaporizinq composit ion at the same temperature, is 0.47 at 

2103 K, 0.44 at 1957 K and 0.53 at 2053 K. These values demonstrate that 

within the experimental temperature ranqe of 1950 K to 2100 K, there is 

no appreciable temperature trend of the act ivi ty of ScS in Sco.soGsSfs), 

i .e.,  agçg = 0.48 -  0.05. 

The value of the act ivi ty can be used to determine the enthalpy 

chanqe associated with the formation of vacancies in Sci.ooS(s): 
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ScS(s) = SCO.8065S (S) + 0.193S Sc(g) ( 2 . 2 6 )  

The above reaction is the result  of the sum of the fol lowing two 

reactions: 

ScS{g) = Sco.806bS(s) + 0.1935 Sc{q) (2.27) 

and 

ScS(s) = ScS(q). (2.28) 

p0.1935 
For reaction 2.27, AGj = -RT In Sc ,  where Pg^ and Pg^g are the 

''ScS 

part ial  pressures corresponding to the conqruently vaporizing 

composit ion. For reaction 2.28, AGj = -RT In Ps^S* Therefore 

p0.1935 p. ^ 

for reaction 2.26, AG: = -RT In — — = RT In 

PSCS 

= RT In ag^r -  0.1935 RT In Pg^. (2.29) 

Evaluating AGj from equation 2.29 and est imating ASJ at the 

temperature of the f inal isotherm of each run yielded an est imated 

enthalpy change for reaction 2.26 which is independent of temperature, 

22.2 ± 0.2 kcal mol"^ at a mean temperature of 2030 K. Table 2.7 l ists 

the calculated AGJ ,  the estimated ASJ and the estimated AHy. 

Referencing the enthalpy change to 298 K yields 23.0 ± 1.7 kcal mol"^. 

This value can be compared with that reported by Tuenge et al . ,^ 18.3 ± 

2.0 kcal mol~i.  The 5 kcal mol"^ discrepancy could be due to the fact 
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Table 2.7. Thermodynamic quanti t ies for the reaction ScS{s) = 
Sco.BObsSfs) + 0.1935 Sc(g) 

T (K) (atm) '^®T (kcal mol 'M aS j  (cal mol- i  K-i)  aH j  (kcal mol- i)  

2103 6.87x10-7 8.4 6.5 22.1 

1957 7.28x10-% 9.5 6.6 22.4 

2053 3.30x10-7 8.8 6.5 22.1 

^Calculated from the l inear least squares result  for Pgc over 
SCu.BOGsSfs) (equation 2.20). 

that Tuenge based his value on a single mass spectrometric experiment at 

2035 K and that Sci.ooS(s) was saturated with Sc. I t  was furthermore 

discovered from the current vaporization experiments that the ion cur­

rents for Sc and ScS are suspect, due to the presence of Sc vapor species 

subl iming from the radiat ion heat shields and the weak and osci l lat ing 

net intensity from the ScS vapor species throughout the entire run. 

A second method of determining the enthalpy change for reaction 2.26 

does not require a knowledge of the value of the act ivi ty of ScS but only 

of i ts temperature independence. This method ut i l izes the Gibbs-

d(AGf/T) 
Helmholtz equation, AHt = ,  and when appl ied to equation 

'  dT-i  

2.29, we f ind that 
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d In P.^ 
AH; = -0.1935 R — .  (2.30) 

'  dT-i 

Using the value of the slope of In Psc T"i ,  which was determined 

from the mass loss data at the congruently subl iminq composit ion (equa­

t ion 2.20), gives AH210U = 24.3 ± 0.3 kcal mol"^ or = 25.0 ± 

1.8 kcal mol- i .  The latter value can be compared to that obtained by 

substi tut ing Tuenge's value of the slope of In vs T-^ from the 

target col lect ion data into equation 2.30, yielding 24.4 ± 1.7 kcal 

mol- i .  This closer agreement using the slope of In Psc vs T-^ supports 

the previous paragraph that the mass spec results are suspect. 

The atomization or cohesive energy of Sci.uoS(s) referenced to 

298 K can be obtained by combining reactions 2.23 and 2.25 to give 

AHggg = 255.7 ± 2.6 kcal mol"^. The enthalpy of formation of 

Sci.ooS(s) at 298 K from scandium metal and sulfur can be obtained by 

combining the atomization enthalpy of Sci.ooS(s) with the vaporization 

enthalpies of Sc(s)® and S(s)^ to give AH^^^es i  ~ 

-98.7 ± 2.8 kcal mol"^. The enthalpy of formation of Sco^gQ^gSfs) at 

298 K can be derived in the same manner to yield AHf,298 J 

= -91.2 ± 2.1 kcal mol- i .  Using the estimated entropy of formation of 

Sci.ooS(s) at 298 K of -3.2 ± 1.0 cal mol"^ K-i ,  which is calculated 

from $290 for Sc(s),^ S(s)^ and ScS(s),? together with the enthalpy of 

formation, yields a standard free energy of formation of SCI .QQS(S) at 

298 K of -97.8 ± 2.8 kcal mol- i .  
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DISCUSSION 

The high temperature Knudsen effusion study by the total mass loss 

method was performed to reaccess the energy required to create approxi­

mately 20% vacant scandium sites in the monosulf ide. The original plan 

was to simultaneously measure the Sc and ScS ion currents along with the 

total mass loss in order to determine the part ial  pressures of Sc, ScS 

and S as a function of both temperature and composit ion. In this manner, 

the calculat ion of the part ial  pressures would have been done in a 

straightforward manner, i .e.,  once the mass spec cal ibrat ion constant was 

obtained for each vapor species, from the mass loss rates at the congru-

ently vaporizing composit ion, al l  the part ial  pressures of Sc, ScS and S 

were known from the start of the run unti l  the congruently vaporizing 

composit ion from the ion currents, rather than i terat ing the mass loss 

data. The ion currents were not used in this investigation to calculate 

thermodynamic functions and are presumed to be erroneous since at the 

higher temperatures subl imation of scandium from the heat shields was 

occurr ing and the effect ive Knudsen cel l  had a much larger ori f ice (at 

least 1/4" in diameter), therefore result ing in larger ion currents and 

part ial  pressures for Sc. A solut ion to this problem may be the addit ion 

of a more effect ive water cool ing jacket in the vicinity of the heat 

shields outside the vacuum chamber. In addit ion, the ScS ion currents 

were so small  and osci l latory, and sometimes even unshutterable, making 

i t  dif f icult  to observe an increasing or decreasing trend in the part ial  

pressure with composit ion at constant temperature. 
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Despite the experimental di f f icult ies encountered in this investi­

gation, several thermodynamic propert ies of Sc^.^ySfs) were determined 

and the solubi l i ty of So metal in ScS to form a homogeneous compound was 

noted. The metal-r ich end of the cubic single phase region was found to 

extend to Sc^.^i+S since there were no l ines corresponding to hexagonal 

Sc metal in the X-ray powder pattern and the Sc part ial  pressure 

decreased rapidly at the start of a run (typical ly at 1300°C). Addi­

t ional experiments using dif ferent start ing composit ions ( i .e.,  more 

metal r ich than Sc^.^S) are reguired to f i rmly establ ish the width of 

the cubic single phase region. 

The second law enthalpy changes at 298 K for the vaporization reac­

t ions of Sco.yubsSfs) (reactions 2.1 and 2.2) are approximately 15 kcal 

mol- i  larger than those reported by Tuenge et al.^ using the target col­

lect ion method. This large discrepancy could be due to the fact that the 

part ial  pressures of Sc, ScS and S were signif icantly smaller than those 

determined by Tuenge and the relat ive pressure trend was total ly dif­

ferent (Tuenge: > Pg^; this work: Pg > Pg^ > Pg^g). The target 

col lect ion data are probably less rel iable because the crucible was not 

in an isothermal environment and an analyt ical spectroscopic determina­

t ion of the concentrat ion of the Sc species on the targets is not as 

accurate as is the direct measurement of mass. 

From the temperature independent value of the act ivi ty of ScS in 

Sco.80bbS(s), agcs = 0.48 ± 0.05, thermodynamic propert ies of 

Sci.ouS(s) were determined. The energy reguired to create approxi­

mately 20% scandium vacancies in SCI . q oS(S) at 298 K was found to be 
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25.0 i  1.8 kcal mol"^. This value is signif icantly smaller than that 

predicted by the ionic model, 132 kcal mol~^, in which Sc is divalent in 

Sci.uoS(s) and a mixture of divalent and tr ivalent cations in 

Scu.BUbbSfs). This result  indicates that the ionic model fai ls to 

predict vacancy formation in Sc^.u^Sfs) at high temperatures. The 

atomization or cohesive energy at 298 K of Sc^.Q^Sfs) was 25^.7 i  ?.6 

kcal mol- i  and the enthalpy or formation at 298 K was -98.7 ± 2.8 kcal 

mol- i .  This latter value is in better agreement with the value estimated 

by Mil ls^^ of -108 ± 10 kcal mol-^, than the value reported by Tuenge 

from mass spectrometry data (-83 ± 5 kcal mol"^). Tuenge's value for 

the cohesive energy could be improved by 5 kcal mo!"^ i f  the slope of 

In Psc vs T~^ were used instead of the act ivi ty of ScS evaluated at 

only one temperature. Furthermore, the value of the heat of formation 

obtained in this work for Sc^.w^Sfs) agrees well  with the corresponding 

quanti t ies for YS(s) (-109 kcal mol"^ ^),  for LaS(s) (-105 kcal mol"^ 

and for LuS(s) (-99.6 -  3.1 kcal mol~^ 

A comparison of the atomization or cohesive energy of these sol ids 

may provide reveal ing insight into the role of the d electron in the 

bonding character. Table 2.8 l ists the atomization enthalpies for the 

stoichiometric monosulf ides, ScS, YS, LaS and LuS. The constant value 

for YS and LaS suggests that the contr ibution of the d electron to the 

metal-metal and metal-nonmetal bonding interactions is similar, while the 

smaller enthalpies for ScS and LuS suggest a decrease in the d electron 

part icipation. This trend in the cohesive energies may be responsible 

for the observation that ScS and LuS vaporize incongruently at high 
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Table 2.8. Atomization enthalpies for ScS, YS, LaS and LuS 

^^atom,298 K Reference 
(kcal mol- i)  

ScS 255.7 ±2.6 This work 

YS 278 i  2 3 

LaS 275 i  3 11 

LuS 268.5 ± 3.0 12 

temperature to form Sco.yoùsS ^nd LugS^, respectively, whi le YS and LaS 

vaporize congruently. Another contr ibuting factor is the notion that the 

4d and 5d wavefunctions extend to larger radial distances than the 3d 

wavefunction and therefore an enhancement in the metal-metal bonding 

interaction in YS and LaS compared to ScS. 
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GENERAL SUMMARY 

From the results of the salf-consistent electronic structure cal­

culat ions, metal atom vacancies (a) cause the p-type wavefunctions cen­

tered on a sulfur atom in the vicinity of a vacancy to redistr ibute and 

create nonbonding states and (b) increase the metal-nonmetal hybridiza­

t ion in the valence band region such that the scandium valency remains 

unchanged. 

The charge density in the valence band region is altered when metal 

atom vacancies are created: the three-fold symmetry of the usual covalent 

o-bonding interaction is destroyed. There is an appreciable reduction in 

the Sc eg -octahedral S p interaction but an overwhelming compensation 

in the Sc eg -square planar S p interaction. In both ScS and ScgS^, the 

primary bonding interaction in the conduction band region originates from 

the project ion of the metal t^q orbitals out towards the tr iangular 

faces of the sulfur polyhedron. In addit ion, a secondary metal-metal 

interaction, observed from the charge density analysis, is directed 

towards the nearest neighbor metal atoms through the edges of the sulfur 

polyhedron. 

The creation of vacancies was shown to lower the Fermi level sug­

gesting an energetic mechanism for vacancy stabi l izat ion, but the detai ls 

of the mechanism could not be determined from this work. The results for 

stoichiometric ScS are in good agreement with exist ing experimental 

results, including UPS, heat capacity and optical data, while experi­

mental data are lacking for the nonstoichiometric material.  
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The thermodynamic quanti t ies obtained from the mass loss Knudsen 

effusion experiments were (a) the temperature independent act ivi ty of 

ScS in Sco.bOGsSfs), ag^s ~ 0.4% ± 0.05 over the temperature span of 

1950-2100 K, (b) the energy required to create approximately 20% scandium 

vacancies in ScS, 25.0 ± 1.8 kcal mol"^ at 298 K, (c) the atomization or 

cohesive energy of ScS, 255.7 ± 2.6 kcal mol-^ at 298 K, and (d) the heat 

of formation of ScS, -98.7 ± 2.8 kcal mol"^ at 298 K. The value of the 

heat of formation is in good agreement with the value predicted by 

Mil ls^^ and the value reported for LuS,^° which l ike ScS has the same 

effect ive metal electron configuration [(n)d^(n+l)s^, ignoring the f i l led 

f-shel l  for Lu J, and vaporizes incongruently to form a more stable metal-

deficient compound at high temperature. 
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FUTURE CONSIDERATIONS 

Suggestions for future work include the calculat ion of the total 

energies ( i .e.,  cohesive or latt ice energies) for ScS and ScgS^ to fur­

ther understand the mechanism of vacancy formation and stabi l izat ion. 

Using the self-consistent crystal potential and wavefunctions, the total 

energy can be calculated from the theoretical formalism of Janak.^i The 

dif ference between the calculated total energy of the compound and the 

sum of the isolated atom total energies, is related to the cohesive 

energy of the compound. In turn, the theoretical ly derived cohesive 

energy is related to the thermodynamical ly determined enthalpy of 

atomization at absolute zero. 

A prel iminary total energy result  for NaHl-type ScS in which the 

sulfur 3s level is a band state and the core potential in the inter­

st i t ial  region is continuous, is -2311.447 Ry. Taking the sum of the 

isolated atom total energies to be -2310.734 Ry (S = -793.412 Ry^^ and Sc 

= -1517.322 Ry23), yields a cohesive energy equal to -0.713 Ry or an 

enthalpy of atomization equal to 224 kcal mol-^ which can be compared to 

the experimental value of this work, 256.6 ± 3.1 kcal mo1-^. Once the 

total energies of both ScS and ScgS^ are known, their dif ference is an 

est imation of the energy required to create vacancies in the scandium 

sublatt ice. The result  could then be compared to the experimental value 

of 25.1 ± 2.3 kcal mol"^. 

Another area which requires addit ional effort is the experimental 

confirmation of the electronic structure of nonstoichiometric scandium 

monosulf ide. Suggestions are heat capacity measurements as a function of 



www.manaraa.com

93 

composit ion to monitor the density of states at the Fermi level and X-ray 

emission and/or photoelectron experiments to provide evidence of the 

sulfur 3p-nonbondinq states. 

Final ly, addit ional mass loss Knudsen effusion experiments are 

necessary in order to determine the extent of the metal solubi l i ty in 

SC^^q qS and to generate a plot of In P-j vs as a function of 

composit ion. From this plot,  thermal functions l ike the part ial  molar 

enthalpy and part ial  molar entropy of Sc and S can be determined. 
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